EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS Autocrine Regulation of Interferon γ in Mesenchymal Stem Cells plays a Role in Early Osteoblastogenesis
نویسندگان
چکیده
Interferon gamma (IFNγ) is a strong inhibitor of osteoclast differentiation and activity. However, its role in osteoblastogenesis has not been carefully examined. Using microarray expression analysis, we found that several IFNγ inducible genes were upregulated during early phases of osteoblast differentiation of human mesenchymal stem cells (hMSC). We therefore hypothesized that IFNγ may play a role in this process. We first observed a strong and transient increase in IFNγ production following hMSC induction to differentiate into osteoblasts. We next blocked this endogenous production using a knockdown approach with siRNA and observed a strong inhibition of hMSC differentiation into osteoblasts with a concomitant decrease in Runx2, a factor indispensable for osteoblast development. Additionally, exogenous addition of IFNγ accelerated hMSC differentiation into osteoblasts in a dose dependent manner and induced higher levels of Runx2 expression during the early phase of differentiation. We next examined IFNγ signaling in vivo in IFNγ receptor-1 knock-out (IFNγR1) mice. Compared to their wild-type littermates, IFNγR1 mice exhibited a reduction in bone mineral density. As in the in vitro experiments, MSC obtained from IFNγR1 mice showed a lower capacity to differentiate into osteoblasts. In summary, we demonstrate that the presence of IFNγ plays an important role during the commitment of MSC into the osteoblast lineage both in vitro and in vivo, and that this process can be accelerated by exogenous addition of IFNγ. These data therefore support a new role for IFNγ as an autocrine regulator of hMSC differentiation and as a potential new target of bone forming cells in vivo.
منابع مشابه
Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells
Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملThe effect of bone marrow-derived mesenchymal stem cells to induce PD-L1 molecule on splenic lymphocytes
Background: Mesenchymal stem cells are non-hematopoietic stromal cells that are used in the treatment of many chronic and autoimmune diseases by modulating the immune system. Due to the limitations of using autologous mesenchymal stem cells, the use of allogeneic stem cells is a promising therapeutic approach in the treatment of immunological disorders. This study aimed to investigate the abili...
متن کاملEstablishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article
Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...
متن کامل